Turbulent oscillating channel flow subjected to a free-surface stress

نویسندگان

  • W. Kramer
  • H. J. H. Clercx
  • V. Armenio
چکیده

The channel flow subjected to a wind stress at the free surface and an oscillating pressure gradient is investigated using large-eddy simulations. The orientation of the surface stress is parallel with the oscillating pressure gradient and a purely pulsating mean flow develops. The Reynolds number is typically Re!=10 and the Keulegan–Carpenter number—the ratio between the oscillation period and advection time scale—is KC=80. Results compare favorably to the data from direct numerical simulations obtained over a single period. A slowly pulsating mean flow occurs with the turbulent flow essentially being statistically steady. Logarithmic boundary layers are present at both the bottom wall and the free surface. Turbulent streaks are observed in the bottom and free-surface layer. The viscous sublayer below the free surface is, however, much thinner. This observation is verified by simulations we performed for a purely wind-driven channel flow. For the oscillating flow, additional low-speed splats !localized regions of upwelling" occur at the free surface when the mean velocity and stress are in the same direction. © 2010 American Institute of Physics. #doi:10.1063/1.3481149$

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Transfer under Double Turbulent Pulsating Jets Impinging on a Flat Surface

In this study, the numerical analysis of turbulent flow and heat transfer of double pulsating impinging jets on a flat surface has been investigated. The unsteady two-dimensional numerical solution for two similar and dissimilar jets was performed using the RNG k-ε model. The results showed that the RNG k-ε model has more satisfactory predictions of the Nusselt number distribution. Comparisons ...

متن کامل

THREE DIMENSIONAL MODELING OF TURBULENT FLOW WITH FREE SURFACE IN MOLD FILLING

In the present study a Finite Difference Method has been developed to model the transient incompressible turbulent free surface fluid flow. A single fluid has been selected for modeling of mold filling and The SOLA VOF 3D technique was modified to increase the accuracy of simulation of filling phenomena for shape castings. For modeling the turbulence phenomena k-e standard model was used. In or...

متن کامل

Numerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater

Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard  turbulence closure model. This study aims to explore the ability of a time splitting method ...

متن کامل

Deposition of Various Shapes Particles on a Rough Surface in Turbulent Flow

An experiment set-up is used to study wall deposition rate of particles on a rough surface in a turbulent channel flow. Deposition velocities for three classes of particles, namely, spherical glass particles, irregular shape polymer particles, and fibrous silicon particles are studied. The particle concentration at the test section was measured with the aid of an isokinetic probe in conjunction...

متن کامل

On Coherent Structures of Turbulent Open-channel Flow Above a Rough Bed

Present study examines turbulent structures of a rough bed open-channel flow in the context of deterministic approach. Instantaneous velocity field is measured in different hydraulic conditions using two dimensional Particle Image Velocimetry (PIV) in vertical plane and Stereoscopic PIV in horizontal plane. Different techniques and quantities such as swirl strength, two-point and cross-correlat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011